Thermodynamic stability of 34 compounds of the system Y-Ba-Cu-O

G.K. Moiseev^a, S.I. Zaitseva^a, N.I. Ilyinych^a, N.A. Vatolin^a and J. Šesták^b

" Institute of Metallurgy, Ural Division of the Russian Academy of Science, 101 Amundsen St., GSP-812, Ekaterinburg, 620219 Sverdlovsk, (Russian Federation) " Institute of Physics of the Czech Academy of Science, Division of Solid State Physics, Cukrovarnická 10, 16200 Prague, (Czech Republic)

(Received 13 July 1992)

Abstract

Using the method of thermodynamic simulation the thermal decomposition of 34 previously described (Moiseev et al., Thermochim. Acta 198 (1992) 267) compounds is described in Ar and O₂. They can be classified into metastable (Y:Ba:Cu_o = 2:8:6₁₇, 2:4:6₁₃, 2:1:3₇, 2:4:2₉, 2:6:4₁₃, 2:10:4₁₇, 2:0:2₅, 0:3:5₈, 0:2:1₃, 2:12:6₂₁, 2:6:5₁₅, 2:10:6₁₉, 2:8:4₁₅, 2:4:7₁₄, 2:2:4₉, 2:3:5₁₁, 1:2:3₇, 6:16:10₃₅) and stable (Y:Ba:Cu_o = 1:2:3₆, 2:4:7₁₅, 4:1:5₁₂, 0:2:3₅, 2:0:1₄, 0:3:1₄, 2:1:1₅, 2:6:2₁₁, 1:0:1₂, 2:2:0₅, 4:3:0₉, 2:4:0₇, 0:1:1₂, 2:4:8₁₅).

INTRODUCTION

With the help of the method of thermodynamnic simulation (TDS) [1,2] the thermal decomposition of 34 compounds was studied, their properties being given in ref. 3, at a total pressure of 10^5 Pa in Ar and O₂ at 100–2000 K in steps of 100 K.

The aim of this work is to estimate the stability of superconducting and concomitant compounds, and the sequence, composition and ratio of the decomposition products.

STABLE COMPOUNDS (Table 1)

The thermodynamic stability (TS) was considered in terms of the extent to which the initial formula composition of the compound was retained over a definite temperature range and also the appearance of the intermediate or final decomposition products of other initial compounds.

Correspondence to: J. Šesták, Institute of Physics of the Czech Academy of Science, Division of Solid State Physics, Cukrovarnická 10, 16200 Prague, (Czech Republic).

0040-6031/93/\$05.00 © 1993 – Elsevier Science Publishers B.V. All rights reserved

No.	Compound	Stability rang	e (K)	Recommended
		Ar	O ₂	I melt
1	YBa ₂ Cu ₃ O ₆	100-1446	900-1200	1446 ° 1300 ° °
2	Y ₂ Ba ₄ Cu ₇ O ₁₅	100-900	100-900	900 °.d
3	Y ₄ BaCu ₅ O ₁₂	100-1342	100-1342	1342 ^d
4	Ba ₂ Cu ₃ O ₅	100-1014	100-1014	1014 ^d
5	Y₂CuO₄	100-1840	100-1840	1840 ^a
6	Ba ₃ CuO ₄	100-1315	100-1315	1315 ^d
7	Y ₂ BaO ₄	1001610	100-1610	1610 ^J
8	Y ₂ BaCuO ₅	100-700	700	800 ^{n.e}
9	$Y_2Ba_6Cu_2O_{11}$	100-800	100-800	^{ل,ہ} 900
10	YCuO ₂	100-1560	_ ^e	1560 °
11	$Y_2Ba_2O_5$	100-200	- ^e	300 "."
12	Y ₄ Ba ₃ O ₉	100-1300	_ ^e	1400 ^{a.e}
13	Y ₂ Ba ₄ O ₇	100700	_ ^e	800 ^{a.c}
14	BaCuO ₂	200-400	_ "	500 °.°
15	$Y_2Ba_4Cu_8O_{15}$	200-600	_°	700 ^e

TABLE 1

Temperture range of stability of compounds in the Y-Ba-Cu-O system

^a In Ar. ^b In O₂. ^c Decomposition temperature T_{decomp} (K). ^d In Ar and O₂. ^c Not stable.

Y₄BaCu₅O₁₂, Ba₂Cu₃O₅, Y₂CuO₄, Ba₃CuO₄, Y₂BaO₄ are stable until T_{mell} in inert (Ar) and oxygen atmospheres. For the remaining compounds, the stability in Ar is greater than in O₂. For some compounds the temperature range of phase existence narrows in O₂ (YBa₂Cu₃O₆, Y₂BaCuO₅); for others the presence of O₂ leads to total decomposition (YCuO₂, Y₂Ba₂O₅, Y₄Ba₃O₉, Y₂Ba₄O₇, BaCuO₂, Y₂Ba₄Cu₈O₁₅). Y₂Ba₄Cu₇O₁₅, Y₂BaCuO₅ and Y₂Ba₆Cu₂O₁₁ decompose at $T < T_{melt}$ according to ref. 3.

Among superconducting compounds (YBa₂Cu₃O₇ ("123" phase) with $T_c = 92 \text{ K}$, Y₂Ba₄Cu₇O₁₅ ("247" phase) with $T_c = 14-68 \text{ K}$ [4] or 95 K [5], and YBa₂Cu₄O₈ ("124" phase) with $T_c = 80 \text{ K}$ [6]), only the "247" phase is thermodynamically stable.

METASTABLE COMPOUNDS (Table 2)

In both Ar and O₂, there is a wide temperature range (100–1400 K) for which the mixture of decomposition products has a constant ratio. For the ranges 100–(600–800) K, except for the initial $Y_2Cu_2O_5$, $Ba_3Cu_5O_8$ and $Y_2Ba_{12}Cu_6O_{21}$ (in Ar), the "247" phase is present in the mixture of decomposition products, which once more proves its TS.

In Ar at 100–(600–800) K, except for the initial "124" phase $Y_2Cu_2O_5$, Ba₃Cu₅O₈ and Ba₂CuO₃, in the mixture of decomposition products

YBa₂Cu₃O₆ is present; in O₂, except for the initial "124" phase $Y_2BaCu_3O_7$, $Y_2Ba_2Cu_4O_9$ and binary cuprates, BaO_2 is present.

Analysis of the region preceding the formation of the melt phase shows that binary oxides $YBa_2Cu_3O_6$ and $Y_4BaCu_5O_{12}$ are the most stable among thermodynamically stable phases.

When the decomposition products of ternary metastable oxides melt, the temperatures are close to 1600 K.

Consequently, in future investigations of the Y-Ba-Cu-O system, there is no need to take into account the compounds given in Table 2.

SUPERCONDUCTING COMPOUNDS

"123" Phase

In Ar as a result of decomposition, at $100-500 \text{ K} \text{ Y}_2\text{BaCuO}_5$, $\text{Y}_2\text{Ba}_6\text{Cu}_2\text{O}_{11}$, BaO_2 and the "247" phase coexist in the mole ratio 1.488:1:2.48:11.41; at 600 K the same phases coexist in the ratio 4.11:5.68:1:43.31; at 700 K Y_2\text{BaCuO}_5, $\text{Y}_2\text{Ba}_6\text{Cu}_2\text{O}_{11}$ and the "247" phase coexist in the ratio 1:1.5:11. In the range 800-1300 K only $\text{YBa}_2\text{Cu}_3\text{O}_6$ exists (the sum of the impurities in this is $\leq 2 \times 10^{-5} \text{ mol}.\%$). At 1400–1500 K Y_2\text{CuO}_4(cr), Y_2\text{BaO}_4(cr) and Ba_2\text{Cu}_3\text{O}_5(l) coexist in the ratio 1.5:1:4.5. Above 1610 K a homogeneous melt forms.

In O₂ at 100-700 K Y₂CuO₄, BaO₂ and the "247" phase coexist in the ratio 12:1.5:1. In the range 900-1200 K only YBa₂Cu₃O₆ exists (the sum of the impurities $\leq 1 \times 10^{-4}$ mol.%). At $T \geq 1300$ K, the composition and concentration of every phase is identical to that found in an Ar environment.

At 100-700(800) K the "247" phase exists in the decomposition products: the maximum concentration in Ar is 97.41 mol.% (600 K) and in O_2 is 88.2 mol.% (800 K). In the range 800(900)-1300(1200) K only YBa₂Cu₃O₆ exists.

A survey of experiments [7] shows that in nitrogen the "123" phase at 763-883 K loses O_2 in an "ortho \rightarrow tetra" transformation, with formation (in this temperature range) of YBa₂Cu₃O₆; in O_2 the same process takes place at 873-1253 K. At 200°C, heating the "123" phase for 700-900 h in air leads to stratification, with formation of "ortho" and "tetra" modifications of the "123" phase [8-10]. TDS results [7] (the "123" phase is a regular solution of YBa₂Cu₃O₆ + YBa₂Cu₃O₇; in the system only Y₂BaCuO₅, BaCuO₂, Y₂Cu₂O₅ and oxides were considered) agree with refs. 8-10. However, increasing the number of compounds in the system and presentation of the "123" phase as a compound YBa₂Cu₃O₇ leads (in Ar and O₂, as was shown above) to different results at low T.

In ref. 11 different ideas on the decomposition of the "123" phase are given, presenting it as a solid solution of a quasibinary system with cation

No.	Initial composition	Ar		02		T of transition into melt (K)
		100-(600-800) K	Before total melting	100-(600-700) K	Bcfore total melting	
	Y ₃ Ba _k Cu ₆ O ₁₇			BaO <u>.</u> Y ₂ Ba ₆ Cu <u>.</u> O ₁₁ 247''	Ba _i CuO ₁ Y ₂ BaO1 Ba <u>2</u> Cu ₃ O5	1610
~	Y_Ba,Cu,O ₁ ,	Y ₂ BaCuO ₅ "123"-O ₆ Y ₂ Ba ₆ Cu ₂ O ₁₁	123-0, Y ₂ BaO4 Y ₃ CuO4	BaO ₂ Y ₂ BaCuO ₅ ··247''	As in Ar	1610
-	YBa <u>,</u> Ču ₁ O ^{, a}	247" CuO 247"	Ba ₂ Cu ₃ O ₅ CuO Cu ₂ O Y 4BaCu ₅ O ₁₂ Pa Cu ₂ O	As in Ar	As in Ar	1500
4	YBa.Cu.O,"	Y ₂ BaCuO5 Y2Ba,Cu2Oti BtiO2 BtiO2	Bazcuros Y_2CuO4 Y_4BaO4 Ba2CusO5	Y <u>.</u> CuO, BaO ₂ ••247*	As in Ar	1610
ю	Y_BaCu3O	-24/ 123-0, V_CuO3 247"	123-0, Y_C00, Y_BaC05012	Y ₂ CuO4 247" Y ₄ BaCu ₅ O ₁₂	Y_CuO1 Y_BaCu5O12 Ba2Cu5O5	1610
<u>.</u>	Y ₂ Ba ₁ Cu_0,	Y,BaCuO, 123"–O, Y,Ba,Cu2O,1	Ba <u>-</u> Cu ₃ O ₅ 123-O ₆ Ba ₁ CuO ₄ Y ₂ BaO ₄	BaO ₂ Y ₂ Ba6Cu <u>2</u> O ₁₁ ••247" V BaccuO	Ba ₁ CuO ₄ Y ₂ BaO ₄ Ba ₂ Cu ₃ O ₅	1610
٢	Y_Ba,Cu,Ols	247" 123" – 0, Y2Ba,Cu2011 Ba,Cu04	Ba ₂ cu ₃ O ₅ ~123"-O ₆ Ba ₁ CuO ₁ Y ₂ BaO ₄	1_204C005 BaO2 ••247" Y2Ba,Cu <u>5</u> O11	Ba ₃ CuO ₄ Y ₂ BaO ₄ Ba ₂ Cu ₃ O ₅	1610
	Y ₂ Ba ₁₀ Cu ₁ O ₁₇	247" 123"0, Y_2Ba,Cu_0,1	Bajcui,O, 123"0, BajCuO, V B-0	BaO ₂ ~123°-0, B _a .CuO.	Ba _i CuO ₁ Y ₂ BaO1 Ba Cu O	1610

6 5	Υ, Сιι, Ο,	Y ₂ CuO4	CuiO	Y ₂ CuO4	As in Ar	1560
	1	CuO (1200 K)	Y ₂ CuO ₄	CuO (1400 K)	44 in 45	
01	Ba _j Cu _s O _x	CuO B= CuO, (14(0K)	Cu <u>-</u> O Ba.Cu.O.	AS ID AT		
11	Ba,CuO,	BuyCuO4	Ba ₃ CuO ₄	BaO,	As in Ar	1315
;		Ba ₂ Cu ₃ O ₅	Ba ₂ Cu ₃ O ₅ B2 Cu3O	Ba ₂ Cu ₃ O ₅ BaO	As in Ar	1610
71	رتاميتا القطية	Y,Ba,Cu,O,	Y,BaO,	123"-O		
1. 1.		Ba,CuO,	Ba,Cu,O,	Ba ₃ CuO ₄ "247"		
11	Y.Ba.Cu.O.	123"-0,	BajCuO4	BaO,	As in Ar	1610
I .		Y,Ba,CujO ₁₁	Y_BaO4	Y2BabCu2O11		
	•	Ba ₃ CuO ₄ - 247'	Ba ₂ Cu ₃ O,	247"		
171	Y,Ba,,Cu,O,,	"123"-O	Ba ₃ CuO ₄	BaO ₂	As in Ar	1610
		Y2Ba,Cu2O11	Y,BaO,	Y2Ba6Ctt.O11		
		Ba ₁ CuO ₁	Ba ₂ Cu ₃ O ₅	Ba _i CuO _i		
1		U-""71"	Ba-Cii().	BaO,	As in Ar	1610
3	Sintashait	Y-Ba.Cu.O.	Y.BaO.	Y,Ba,Cu,O,		
-		BayCuO4	Ba,Cu,O,	Ba _i ,CuO ₁		
				247"		£
19	Y,Ba,Cu,O,	-123"-0,	Y ₂ CuO4	BaO,	Y ₂ CuO4	2
		Y ₂ Ba ₄ Cu ₈ O ₁₅	"123"–O ₆	247"	Ba ₂ Cu ₃ O ₅	
			Y ₄ BaCu ₅ O ₁₂	CIIO		
			Ba ₂ Cu ₃ O,	Y ₄ BaCu ₅ O ₁₂		
11	Y,Ba,Cu,O,	"123"-O,	123-0,	Y,CIIO.	Y ₂ BaO1 V 2 6	M /1
		Y2CuO4	Y2CuO4			
		Y ₄ BaCu ₅ O ₁₂	Y ₄ Bacu ₅ O ₁₂			
81	Y.Ba.Cu.O.	-123"-0,	-123"-0,	BaO.	Y2CuO4	1500
:		Y,BaCuO,	Y,CuO,	Y,CuO,	Y ₂ CuO ₄	
		Y,CuO,	Y,BaO,	247	Ba ₂ Cu ₃ O ₄	
		247"	Ba ₂ Cu ₃ O ₅			
61	Y _n Ba _{1n} Cu ₁₀ O ₃₅	Y-BaCuO,	Ba ₃ CuO ₃ V P-O	BaO ₂ V Br Cr. O	As in Ar	1610
	•	-12) -0/-		11-22-24-04-02-04-04-04-04-04-04-04-04-04-04-04-04-04-		
		T_2Ba,cu2OII 247"	50Eu Jus	ŝ		
a Superco	uducting ^h T _{ran} , in melt is 170)	0 K. At 400-800 K in O ₂ on	y the "247" phase is present.			

ł

composition "123" (YBa₂Cu₃O_{6+z}) and phase diagram "Z-T (K)". In particular, for Z = 1, decomposition according to ref. 11 may lead to the appearance of the "247" phase. The conclusion about the thermodynamic instability of the "123" phase reached in ref. 11, is proved by us.

"124" Phase

At 100-600 K in Ar, as a result of YBa₂Cu₄O₈ decomposition CuO and the "247" phase coexist in equimolar ratio; at 700 K, a mixture of the phases CuO, "247", Y₄BaCu₅O₁₂ and Ba₂Cu₃O₅ in the ratio range 800–1300 K, 14.9:13.7:1:3.5 In the the ratio coexist. $CuO:Y_4BaCu_5O_{12}:Ba_2Cu_3O_5$ is kept equal to 1:2:7; above 1014 K $Ba_2Cu_3O_5$ melts. At 1400 K CuO(cr), $Cu_2O(cr)$ and $Y_4BaCu_5O_{12}(l)$, Ba₂Cu₃O₅(1) coexist in the ratio 1.43:6.86:24. At $T \ge 1500$ K the melt is formed.

In O_2 the behaviour of the "124" phase is almost identical to that described above. The range of CuO and "247" phase coexistence (100-700 K) increases a little.

On the basis of refs. 4-6, 12 and 13, one can draw the following conclusions.

By varying P, T and P_{0} , from "123" phase and CuO it is possible to synthesize the "124" and "247" phases.

Thermogravimetry shows the "124" phase to be more stable than the "123" phase.

The pressure in the system considerably influences the conditions of synthesis (decomposition) of the phases "123", "124" and "247".

In attempts at thermodynamic interpretation of the results for the system, simple oxides were taken into account in addition to the group of superconducting phases Y_2BaCuO_5 and $BaCuO_2$.

The conditions at which the experiments are performed do not guarantee that the system will reach equilibrium.

In ref. 14 at $P_{0} = 1$ atm, the behaviour of the "124" phase is described by the equilbrium

$$YBa_2Cu_3O_{6+z} + CuO + (1-z)/2O_2 \rightleftharpoons YBa_2Cu_4O_8$$
(1)

below 1118 K the reaction being shifted to the right; at T > 1118 K the "124" phase decomposes. In ref. 14 the possibility of decomposition with formation of "247" and CuO phases is assumed.

"247" Phase

In Ar at 100-800 K, CuO (100-500 K), $Ba_2Cu_3O_5$ (above 200 K), $Y_4BaCu_5O_{12}$ (above 600 K) and $YBa_2Cu_3O_6$ (700 K and higher) exist

۰.,

together with impurities. Their respective proportions at 800 K are 6.5×10^{-5} , 10.9, 3.5 and 10.4 mol.%. At 900-1100 K phases form as a result of the decomposition given by

$7Y_2Ba_4Cu_7O_{15} \rightarrow 6YBa_2Cu_3O_6 + 2Y_4BaCu_5O_{12} + 7Ba_2Cu_3O_5 + 5O_2$ (2)

In the range $1200-1400 \text{ K YBa}_2\text{Cu}_3\text{O}_6(\text{cr})$, $\text{Y}_2\text{Cu}\text{O}_4(\text{cr})$ and $\text{Ba}_2\text{Cu}_3\text{O}_5(\text{l})$ coexist. Above 1700 K the only condensed phase is the melt.

In O₂, the initial phase exists at 100-800 K, together with a small amount ($\leq 1 \times 10^{-5}$ mol.%) of impurities Y₂CuO₄ and BaO₂. At 900-1100 K the phase mixture exists according to eqn. (2); at 1200-1500 K, Y₂CuO₄(cr) and Ba₂Cu₃O₅(l) exist in the ratio 1:2. Above 1700 K the melt is formed.

Analysis of literature data shows that no direct experimental measurements of the "247" phase stability in Ar and O₂ under equilibrium conditions have been made. In ref. 4, at $P_{O_2} = 7-8$ bar and with T decreasing from 1000 to 700 K in the system "123"-CuO, the sequence of phase appearance is "123" \rightarrow "123" and "247" \rightarrow "247" \rightarrow "124". According to authors of ref. 4, this testifies to the higher stability of the "124" phase than the "247" phase.

Thus, our data agree with the conclusions in ref. 11 about the thermodynamic instability of the "123" phase. After analysis of known experimental data, the question of thermodynamic stability of the "124" and "247" phases remains open. In ref. 11 it is supposed that the "124" phase is the only thermodynamically stable compound from the considered group of superconductors. According to our results only the "247" phase is thermodynamically stable.

DISCUSSION

In our opinion, the thermodynamic stability of a compound can be estimated mainly by way of TDS of the compound's behaviour at definite T, P and gas environment composition, necessarily taking into account the thermodynamic functions of all (in the limit) compounds from the elements of the system. Judgement of the thermodynamic stability of a compound, based only on experiment will very often be indefinite because there is no guarantee that the system has ever reached equilibrium state. In this case, the experimentally observed stability should be discussed at definite system composition and exposure time.

The use of non-equilibrium experimental data for the description of phase stability is a permissible pseudothermodynamic method; it has some application and is useful for practical specialists in the field of so-called kinetic phase diagrams [15]. However, data thus obtained cannot be considered thermodynamically pure and do not provide the principal answer concerning the stability/metastability of phases, owing to the

geometric hindrance of the formation and/or decomposition processes [16].

Because the known experimental data about the phase composition of the system Y-Ba-Cu-O, i.e. the time intervals of the existence of the various phases cannot be considered as obtained under equilibrium conditions, TDS of this system was conducted with a limited number of compounds and so in the sytem Y-Ba-Cu-O only a pseudothermodynamic analysis has been carried out as far as we know. It is worth mentioning that this work is the first attempt to apply TDS simulation for estimation of the stability of compounds in the Y-Ba-Cu-O system.

REFERENCES

- 1 G.K. Moiseev and B.G. Trusov, Thermodynamic simulation in high-T inorganic systems, Publication of Urals State University, Sverdlovsk, 1989, pp. 1, 11.
- 2 G.K. Moiseev and N.A. Vatolin,, Melts, 5 (1990) 15-40.
- 3 G.K. Moiseev, S.I. Zaitseva, N.I. Ilyinyh, N.A. Vatolin, D.S. Tsagareischvili, G.G. Gvelesiani, I.B. Barateshvili and J. Šesták, Thermochim. Acta, 198 (1992) 287.
- 4 J. Karhinski, S. Rusiecki, B. Bucher et al., Physica C, 161(5/6) (1989) 618-625.
- 5 J.-Y. Genoud, T. Graf, A. Junod et al., Physica C, 177(4/6) (1991) 315-329.
- 6 J. Karpinski, S. Rusiecki, E. Kaldis and E. Jilek, J. Less-Common Me., 164/165 (1990) 3-19.
- 7 G.K. Moiseev, S.I. Zaitseva, D.S. Tsagareischvili and N.A. Vatolin, SFCT, 4(40) (1991) 1999-2011.
- 8 T.S. Radhakrihran, J. Janaki, G.V. Rao et al., Pramana, 32(5) (1989) L705-L713.
- 9 S. Manjini, K. Gin, J. Ijengar and S. Radhanathan, Int. Conf. Superconductivity, Bangalore, 1990, p. 129.
- 10 I. Janaki, Y. Hariharan, G.V. Rao et al., Int. Conf. Superconductivity, Bangalore, 1990, p. 130.
- 11 G.F. Voronin, J. Phys. Chem., 65(8) (1991) 2017-2035.
- 12 A.W. Hewet, P. Fisher, E. Kaldis et al., J. Less-Common Met., 164/165 (1990) 39-49.
- 13 B. Bucher, J. Karpinski, E. Kaldis and P. Wachter, J. Less-Common Met., 164/165 (1990) 20-30.
- 14 G.F. Voronin and S.A. Degtyarev, SFCT, 4(4) (1991) 776-782.
- 15 Z. Chuoj, J. Šesták and A. Tříska (Eds), Kinetic Phase Diagrams; Nonequilibrium Phase Transitions, Elsevier, Amsterdam 1991.
- 16 J. Šesták and N. Koga, Thermochim. Acta, in press.